Mitigation of Flux Trapping in Large-Format, Low-Tc Analog SQUID Arrays Kent Irwin

- Dept. of Physics, Stanford University **SLAC National Accelerator Laboratory**
- Detection and Mitigation of Flux Trapping in Superconducting Digital Electronics Workshop
 - December 13, 2024 Yokohama National University

Stanford University

Mitigation of Flux Trapping in Large-Format, Low-Tc Analog SQUID Arrays

- Large format, multiplexed analog SQUID arrays
- Large-scale applications of multiplexed SQUID arrays reliable enough for \bullet use in complex environments (x-ray beamlines, South Pole, space, ...)
- Techniques to control and mitigate flux-trapping in **analog** arrays
- SLAC superconducting foundry

Some aspects of flux control in analog SQUID circuits may present differently than in digital circuits

Devices shown in this presentation were fabricated at NIST/Boulder

Outline

SQUID-coupled detector readout

- SQUIDs can be used to read out superconducting transition-edge sensors for x-ray, CMB, visible photon, gamma-ray, alpha particle, and other detection applications
- Robust arrays of SQUID of scale ~100,000 are being deployed, with plans for even larger arrays.
- Robust deployment at this scale has required the implementation of features to mitigate and control flux trapping.

Niobium trilayer SQUID

These techniques are used at scale in both dc SQUIDs and rf SQUIDs arrays **RF SQUID** array

DC SQUID array

On-off switches used in multiplexing

Photograph of four-junction interferometer switch

Some arrays use superconducting bump-bond hybridization

1,280-pixel SQUID Multiplexer

1,280-pixel TES bolometer

bump-bonded subarray (TES+MUX)

5,120 pixels at 450 um

5,120 pixels at 850 um

Applications of these techniques

Reliable enough for use in complex environments (x-ray beamlines, South Pole, space, etc)

- Cosmic Microwave Background lacksquare
- THz imaging
- Dark-matter searches
- X-ray imaging spectroscopy
- X-ray astronomy
- Submillimeter astronomy
- actinide analysis
- Alpha-particle detection for nuclear forensics

Visible photon detection for quantum communications / key distribution / loophole-free Bell

Gamma-ray detection for nuclear non-proliferation, forensics, nuclear security, and mixed-

Cosmic Microwave Background

South Pole telescope

Arrays of SQUIDs using these designs and incorporating flux-trapping-mitigation features described here are used in all **Cosmic Microwave Background telescopes** currently operating.

Atacama Cosmology Telescope

BICEP / Keck telescopes

Simons Observatory

X-ray spectrometers on beamlines

Arrays of SQUIDs are used in x-ray beamline instruments, including the BL10-1 instrument at SSRL shown here

Athena X-Ray Observatory

Flux-trapping control in analog SQUID arrays

- Narrow superconducting films (< 5 um is our rule)
- Slotted washers lacksquare
- Serial gradiometer pickup loops to avoid trapping
- coupling to distant flux motion

Second-order parallel gradiometers with high symmetry to avoid

All superconducting films < 5 um wide

Flux expulsion when passing through the transition

We want flux to be preferentially expelled while passing through the superconducting transition.

- 1) We keep all superconducting films no wider than 5 um
- 2) Cool single devices in < 50 uT. Even though the "universal rule" predicts full flux expulsion, we do see a small amount of flux trapping in large arrays of devices
- 3) Cool large device arrays in < 5 uT.
- Cool slowly 4)
- If necessary, reheat just above the transition 5) and slowly cool a second time

Slotted washers and second-order gradiometers

Wide flux-focusing washers are slotted, rather than solid. This serves to:

- 1) Preferentially trap flux in the slots, rather than pinning it in the superconductor.
- 2) Reduce parasitic capacitance between input wire coils and washer, which is important at ~10 GHz Josephson frequencies
- 3) This SQUID is also a parallel second-order gradiometer to mitigate pickup from motion of distant trapped flux

RF SQUID using slotted flux-focusing washers

Junction 3

- flux quanta in pickup loops.
- trapping in very large arrays of devices at 5 uT.

Serial gradiometer pickup loops

Two junctions

Analog SQUID circuits are sensitive both to vortex trapping in films / junctions and also to non-zero

Flux-trapping can be reduced in pickup loops by the use of figure-eight serial gradiometers. A serial gradiometer has net zero flux through the loop if the field is uniform. We see no flux

Highly symmetric designs

- All flux pickup loops are first- or second-order gradiometers.
- We preserve lines of symmetry as much as possible so that uniform fields are not picked up by input loops.
- Distant moving flux presents as a uniform field at the pickup loop, with null coupling.

- \bullet
- \bullet similar devices

Director Hsiao-Mei Sherry Cho

Detector Microfabrication Facility (DMF) SLAC Arrillaga Science Center

SLAC Superconducting Foundry

Devices shown in this talk were fabricated in the NIST Boulder clean room. SLAC is now commissioning a superconducting foundry that will produce

LABORATORY

SLAC Superconducting Quantum Foundry

All tools and processes compatible with 150 mm wafers

thography	. Stepper - ASML PAS 5500/100 . Coating/develop Track - PicoTrack . Direct Writing Lithography- Heidelberg DWL66+	
osition Tools	 IPCVD/PECVD- Oxford Cobra E-Beam Evaporator - Lesker Double-Angle Evaporator - Plassys Nb, AlOx, Nb Sputtering -Lesker AlMn Sputtering - Lesker Ti, Au, PdAu Sputtering - Lesker 	
tch Tools	 Florine/Chlorine ICP Metal Etcher – Oxford Cobra Florine ICP Dielectrics Etcher – Oxford Cobra Deep Etcher – SPTS Rapier O2 Plasma Etcher – Technics 	
1etrology	 Profilometer - KLA P-17 Film Stress -K-space Auto Wafer Inspection and Probe -FormFactor-summit Ellipsometer - Woollam Spectrophotometer - Filmetrics 4 Microscopes - 3 of Leica microscopes 	
et benches	 Acid Etching- JST HF Etching -JST Solvent Liftoff -JST Solvent PR Removal- JST Solvent MEMS Release - JST LOR Spin Coating - JST MF26A Wet Bench - JST 6 Spin Rinse Dryers - 1 semitool and 5 Shellback 	F

- We have a set of design rules that allow robust performance of single analog SQUID devices in < 50 uT, and large format analog SQUID arrays when cooled < 5 uT.
- It would be valuable to enable operation in Earth's field (~50 uT) with even large-format analog SQUID arrays.
- I hope that lessons learned from flux engineering in large-format analog SQUID arrays will have some relationship to digital circuits

