Workshop on Detection and Mitigation of Flux Trapping in Superconducting Digital Electronics @Yokohama National University 13/12/2024

Research activities on superconducting digital electronics at NICT

National Institute of Information and Communications Technology

Hirotaka Terai, Shigeyuki Miyajima, Masahiro Yabuno, and Shigehito Miki

R&D of superconducting digital circuits at NICT

Multi-channel SNSPD system

570 mm

	Typical	Unit
System DE (λ=1550 nm)	90	%
Dark Count Rate	1-100	cps
Maximum Count Rate	20-40	MHz
Jitter (FWHM)	50	ps
Input	Opt. fiber (SMF or MMF)	
Output port	SMA	
Cryocooler	0.1 W GM (Air cooling、AC100V)	
Lowest Temp.	< 2.5	К
Operation time	10,000	hours

There are seven startups selling SNSPD systems worldwide

1750 mm

Multi-pixel SNSPD

Post signal processing using SFQ circuit for multi-pixel SNSPD

H. Terai et al., IEEE TAS 19, 350-353 (2009)

Achievements using SFQ signal processor

Achievements using SFQ signal processor

S. Miyajima et al., Optics Express 26, 29045 (2018)

M. Yabuno et al., Optics Express 28, 12047, 2020

S. Miyajima et al., Appl. Phys. Lett., 112, 182602 (2023)

Implementation of SFQ circuit to a cryocooler

Temperature rise (Sumitomo 0.1 W GM cryocooler RDK-101)

Catalog spec. : 0.006 K/mW → 0.6 K/0.1 W Experiment : 0.044 K/mW 0.1 K/mW near the heat source

Allowable heat generation at 2^{nd} stage \rightarrow 5 mW

If the bias line connector has a contact resistance of $20 \text{ m}\Omega$, a bias current of 0.5 A will generate joule heating of 5 mW.

Miniature connector for 65-GHz RF signal manufactured by Kawashima Inc.

Solutions

- \checkmark Use a circuit that can be driven by less current such as AQFP
- ✓ Use the connector with low contact resistance specialized for dc current supply

AQFP/SFQ hybrid encoder

- ✓ The time information of photon detection is readout through SFQ circuit with low timing jitter.
 → Bias current to the SQUID is kept constant independent of the number of input channels.
- ✓ Spatial information of photon detection is readout through AQFP circuit.

*Collaborating with YNU and AIST

N. Takeuchi *et al.*, *IEEE TAS* **29**, 2201004, 2019 N. Takeuchi *et al.*, *Optics Express* **28**, 15824, 2020

Dc bias current supply via μ -Dsub connector

Non-magnetic (<20 nT) μ-Dsub Connector

Temperature rise due to dc current supply can be suppressed by using µ-Dsub connector

64-ch event driven encoder

- ✓ Minimum $I_{\rm c}$: 100 µA
- ✓ # of JJ: 2610
- / Bias current: 270 mA

Bias Margin: 198 mA – 248 mA Temperature rise: 0.1 K

Contact resistance: 0.376 m Ω @ 2.4 K

Miyajima et al., 70th JSAP spring meeting

Difficulties unique to superconducting digital circuits N/CT

✓ Debugging is difficult after cooling.

Difficult to identify the origin and location of the errors.

- \rightarrow Difficult to provide feedback to the design and fabrication process.
- ✓ Not only circuit defects but also trapped flux can cause malfunctions.

Moat in GP is not a perfect solution to eliminate the effect of trapped flux.

Possible sources of flux trapping

- ✓ Residual magnetic field due to insufficient magnetic shield
- \checkmark Magnetization of $\mu\text{-metal}$ shield
- ✓ Magnetization of screws and other parts around the chip
- ✓ Thermoelectric current due to Seebeck effect
- ✓ External noise

Residual magnetic field in the dual μ -metal shields

LakeShore Type-421 Gaussmeter+UHS probe \rightarrow Measurement resolution: 0.01 mG

Possible sources of flux trapping

✓ Residual magnetic field due to insufficient magnetic shield

- \rightarrow Triple μ -metal shields may reduce residual magnetic flux below Φ_0 .
- \checkmark Magnetization of $\mu\text{-metal}$ shield
 - \rightarrow Requires demagnetization by thermal annealing
- \checkmark Magnetization of screws and other parts around the chip
 - → Requires frequent check by Gaussmeter and AC demagnetization
- ✓ Thermoelectric current due to Seebeck effect
- ✓ External noise

Thermoelectric current around the chip

Effect of the artificial flux trap to the SQUID modulation

Loop inductance of the SQUID was set to a value close to that of the JTL

SQUID modulation for various coil current

Coil current vs shift of the modulation curve

Shift of modulation curve is quantized by 36 μ A Clear evidence that flux is trapped in the moat Modulation period is 406 µA → 36 μA/406 μA=0.09 $I_{\rm C}$ is 455 µA at $I_{\rm CONT}$ =0 for single flux trap, 455 μA/470 μA(*I*_{CMAX})=0.968 \rightarrow 3.2% reduction of $I_{\rm C}$

Diagnostic of SFQ shift resister

Bias current shielding in CONNECT cell library

OPEN cell

SUSHI cell *<u>SUperconducting</u> <u>SHI</u>eld

Layout of measured chip

- The circuit is composed of 8 independent DSRs.
- -Bias current is supplied through the common bias line.

Measured results

Open cell

Narrow margin for SR1 and SR5

SUSHI cell

Bias current concentration causes malfunctions in OPEN cells

Time

Effect of trapped flux

OPEN448 No3 Center chip SR1 with SUSHI cells

In the 1st and 3rd measurement, bias margins were narrow due to the errors at 33rd bit

 \rightarrow Flux is trapped at the same position!

Summary

- ✓ We introduced our recent activities on cryogenic signal processing for SNSPD array to enhance the performance of SNSPD.
 - Dc current supply to SFQ circuits is a key issue to realize the large-format SNSPD array.
 - Dc current supply of ~1 A will be possible by employing non-magnetic μ -Dsub connectors.
- \checkmark We introduced our old activities on circuit diagnostic to reveal the origin of circuit errors.
 - The origin of flux trap remains unclear despite significant efforts to reveal it.
 - Trapped flux at the moat may affect the circuit operation when the moat is too close to the circuit.
 - The position of flux trap is sometimes reproducible.
 - → Non-uniformity of superconducting properties of GP may cause flux trap. We are trying to test epitaxial NbN films as GP in the future.
 - More general diagnostic method for large-scale SFQ circuit will be required.

Diagnostic of SFQ circuit using DSR

Fig. Block diagram of diagnostic shift register (DSR)

Optimal bias

The number of pulses appeared at output "mout" corresponds with the number of DFFs.

Over bias

Timing error occurs at a location with the lowest margin. We can identify the error location.

Under bias

If flux trapping exists, timing errors occur before this waveform appears.

din J	40th	
dout		
din J. Erro	or location	
clkin		
dout		
mout		
din _	Error location	
clkin		
dout		
mout		

Residual magnetic flux on 5 mm x 5 mm chip

Earth magnetic field: 300~500 mG

1-mm-thick $\mu\text{-metal}$ shield \rightarrow -20 dB

Magnetic field inside the dual μ -metal shield: 0.03~0.05 mG

 \rightarrow Comparable to the measured magnetic field of 0.01~0.1 mG

5 mm x 5 mm chip:

 $0.1 \text{ mG} \rightarrow \Phi = 10^{-8} \text{ x } 25 \text{ x } 10^{-6} = 250 \text{ x } 10^{-15} \text{ Wb} = 121 \Phi_0$

0.03 mG \rightarrow 36 Φ_0 for 5 mm x 5 mm chip

Triple μ -metal shied may reduce residual magnetic flux below 1 Φ_0 .